Latent Feature Based Recommender System for Learning Materials Using Genetic Algorithm

نویسنده

  • Mojtaba Salehi
چکیده

With the explosion of learning materials available on personal learning environments (PLEs) in the recent years, it is difficult for learners to discover the most appropriate materials according to keyword searching method. Recommender systems (RSs) that are used to support activity of learners in PLE can deliver suitable material to learners. This technology suffers from the cold-start and sparsity problems. On the other hand, in most researches, less attention has been paid to latent features of products. For improving the quality of recommendations and alleviating sparsity problem, this research proposes a latent feature based recommendation approach. Since usually there isn’t adequate information about the observed features of learner and material, latent features are introduced for addressing sparsity problem. First preference matrix (PM) is used to model the interests of learner based on latent features of learning materials in a multidimensional information model. Then, we use genetic algorithm (GA) as a supervised learning task whose fitness function is the mean absolute error (MAE) of the RS. GA optimizes latent features weight for each learner based on his/her historical rating. The method outperforms the previous algorithms on accuracy measures and can alleviate the sparsity problem. The main contributions are optimization of latent features weight using genetic algorithm and alleviating the sparsity problem to improve the quality of recommendation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014